In recent years, semi-supervised graph learning with data augmentation (DA) is currently the most commonly used and best-performing method to enhance model robustness in sparse scenarios with few labeled samples. Differing from homogeneous graph, DA in heterogeneous graph has greater challenges: heterogeneity of information requires DA strategies to effectively handle heterogeneous relations, which considers the information contribution of different types of neighbors and edges to the target nodes. Furthermore, over-squashing of information is caused by the negative curvature that formed by the non-uniformity distribution and strong clustering in complex graph. To address these challenges, this paper presents a novel method named Semi-Supervised Heterogeneous Graph Learning with Multi-level Data Augmentation (HG-MDA). For the problem of heterogeneity of information in DA, node and topology augmentation strategies are proposed for the characteristics of heterogeneous graph. And meta-relation-based attention is applied as one of the indexes for selecting augmented nodes and edges. For the problem of over-squashing of information, triangle based edge adding and removing are designed to alleviate the negative curvature and bring the gain of topology. Finally, the loss function consists of the cross-entropy loss for labeled data and the consistency regularization for unlabeled data. In order to effectively fuse the prediction results of various DA strategies, the sharpening is used. Existing experiments on public datasets, i.e., ACM, DBLP, OGB, and industry dataset MB show that HG-MDA outperforms current SOTA models. Additionly, HG-MDA is applied to user identification in internet finance scenarios, helping the business to add 30% key users, and increase loans and balances by 3.6%, 11.1%, and 9.8%.
translated by 谷歌翻译
Tensor robust principal component analysis (TRPCA) is a promising way for low-rank tensor recovery, which minimizes the convex surrogate of tensor rank by shrinking each tensor singular values equally. However, for real-world visual data, large singular values represent more signifiant information than small singular values. In this paper, we propose a nonconvex TRPCA (N-TRPCA) model based on the tensor adjustable logarithmic norm. Unlike TRPCA, our N-TRPCA can adaptively shrink small singular values more and shrink large singular values less. In addition, TRPCA assumes that the whole data tensor is of low rank. This assumption is hardly satisfied in practice for natural visual data, restricting the capability of TRPCA to recover the edges and texture details from noisy images and videos. To this end, we integrate nonlocal self-similarity into N-TRPCA, and further develop a nonconvex and nonlocal TRPCA (NN-TRPCA) model. Specifically, similar nonlocal patches are grouped as a tensor and then each group tensor is recovered by our N-TRPCA. Since the patches in one group are highly correlated, all group tensors have strong low-rank property, leading to an improvement of recovery performance. Experimental results demonstrate that the proposed NN-TRPCA outperforms some existing TRPCA methods in visual data recovery. The demo code is available at https://github.com/qguo2010/NN-TRPCA.
translated by 谷歌翻译
由于其在多个工业应用领域的竞争性能,深度学习在我们的日常生活中起着越来越重要的作用。作为基于DL的系统的核心,深度神经网络会自动从精心收集和有组织的培训数据中学习知识,以获得预测看不见数据的标签的能力。与需要全面测试的传统软件系统类似,还需要仔细评估DNN,以确保受过训练的模型的质量满足需求。实际上,评估行业中DNN质量的事实上的标准是检查其在收集的标记测试数据集中的性能(准确性)。但是,准备这样的标记数据通常不容易部分,部分原因是标签工作巨大,即数据标记是劳动密集型的,尤其是每天有大量新的新传入的未标记数据。最近的研究表明,DNN的测试选择是一个有希望的方向,可以通过选择最小的代表性数据来标记并使用这些数据来评估模型来解决此问题。但是,它仍然需要人类的努力,不能自动。在本文中,我们提出了一种名为Aries的新技术,可以使用原始测试数据获得的信息估算新未标记数据的DNN的性能。我们技术背后的关键见解是,该模型在与决策边界具有相似距离的数据上应具有相似的预测准确性。我们对13种数据转换方法的技术进行了大规模评估。结果表明,我们技术的有用性是,白羊座的估计准确性仅为0.03%-2.60%(平均0.61%),从真实的准确性中差。此外,在大多数(128个)情况下,白羊座还优于最先进的选择标记方法。
translated by 谷歌翻译
最近,越来越多的图像被压缩并发送到用于机器分析任务的后端设备〜(\ textIt {e.g。,}对象检测),而不是纯粹由人类观察。但是,大多数传统图像编解码器旨在最大程度地减少人类视觉系统的失真,而无需考虑机器视觉系统的需求增加。在这项工作中,我们为机器视觉任务提出了一种预处理增强的图像压缩方法,以应对这一挑战。我们的框架不是依靠学习的图像编解码器进行端到端优化,而是基于传统的非差异编解码器,这意味着它是标准兼容的,并且可以轻松地部署在实际应用中。具体而言,我们在编码器之前提出了一个神经预处理模块,以维护下游任务的有用语义信息,并抑制无关信息以节省比特率。此外,我们的神经预处理模块是量化自适应的,可用于不同的压缩比。更重要的是,要通过下游机器视觉任务共同优化预处理模块,我们在后传播阶段介绍了传统非差异编解码器的代理网络。我们通过评估具有不同骨干网络的两个代表性下游任务的压缩方法来提供广泛的实验。实验结果表明,我们的方法通过节省约20%的比特率来实现编码比特率和下游机器视觉任务的性能之间的更好权衡。
translated by 谷歌翻译
在过去的几年中,深度学习(DL)一直在不断扩大其应用程序,并成为大型法规时代大规模源代码分析的推动力。由于意外的准确性降解,测试集与训练集不同的分布与训练集不同的分布与训练集不同。尽管最近在计算机视觉和自然语言过程等领域取得了分配转移基准测试的最新进展。对于源代码任务的分配转移分析和基准测试,进展有限,由于其数量和支持几乎所有工业部门的基础,都有很大的需求。为了填补这一空白,本文启动了提出代码,即用于源代码学习的分销基准数据集。具体而言,代码支持2种编程语言(即Java和Python)和5种代码分发偏移(即任务,程序员,时间戳记,代币和CST)。据我们所知,我们是第一个定义基于代码表示的分布变化的人。在实验中,我们首先评估现有分布探测器的有效性以及分配移位定义的合理性,然后测量流行代码学习模型(例如Codebert)对分类任务的模型概括。结果表明,1)仅基于SoftMax得分的OOD检测器在代码上表现良好,2)分配转移会导致所有代码分类模型中的准确性降解,3)基于表示的分布转移对模型的影响比其他模型具有更高的影响,并且4)预训练的模型对分布变化更具抵抗力。我们公开提供代码,从而实现了有关代码学习模型质量评估的后续研究。
translated by 谷歌翻译
对象异常的检测对于工业过程至关重要,但是由于难以获得大量有缺陷的样本以及现实生活中无法预测的异常类型,因此无监督的异常检测和定位尤为重要。在现有的无监督异常检测和定位方法中,基于NF的方案取得了更好的结果。但是,两个子网(复杂函数)$ s_ {i}(u_ {i})$和$ t_ {i}(u_ {i})在nf中通常是多层的perceptrons,需要从2D扁平至1D,破坏了特征图中的空间位置关系并丢失空间结构信息。为了保留并有效提取空间结构信息,我们在这项研究中设计了一个复杂的函数模型,该模型具有交替的CBAM嵌入在堆叠的$ 3 \ times3 $全卷积中,该卷积能够保留并有效地在标准化流程模型中提取空间结构信息。 MVTEC AD数据集的广泛实验结果表明,Cainnflow基于CNN和Transformer Backbone网络作为特征提取器达到高级准确性和推理效率,并且Cainnflow可在MVTEC广告中获得$ 98.64 \%的像素级AUC $ 98.64 \%\%。
translated by 谷歌翻译
积极学习是一种降低标签成本以构建高质量机器学习模型的既定技术。主动学习的核心组件是确定应选择哪些数据来注释的采集功能。最先进的采集功能 - 更重要的是主动学习技术 - 已经旨在最大限度地提高清洁性能(例如,准确性)并忽视了鲁棒性,这是一种受到越来越受关注的重要品质。因此,主动学习产生准确但不强大的模型。在本文中,我们提出了一种积极的学习过程,集成了对抗性培训的积极学习过程 - 最熟悉的制作强大模型的方法。通过对11个采集函数的实证研究,4个数据集,6个DNN架构和15105培训的DNN,我们表明,强大的主动学习可以产生具有鲁棒性的模型(对抗性示例的准确性),范围从2.35 \%到63.85 \%,而标准主动学习系统地实现了可忽略不计的鲁棒性(小于0.20 \%)。然而,我们的研究还揭示了在稳健性方面,在准确性上表现良好的采集功能比随机抽样更糟糕。因此,我们检查了它背后的原因,并设计了一个新的采购功能,这些功能既可定位清洁的性能和鲁棒性。我们的采集功能 - 基于熵(DRE)的基于密度的鲁棒采样 - 优于鲁棒性的其他采集功能(包括随机),最高可达24.40 \%(特别是3.84 \%),同时仍然存在竞争力准确性。此外,我们证明了DRE适用于测试选择度量,用于模型再培训,并从所有比较功能中脱颖而出,高达8.21%的鲁棒性。
translated by 谷歌翻译
参考图像分割旨在通过自然语言表达段段。在文本和图像之间的不同数据属性中,对网络充满良好的对齐文本和像素级别特征是具有挑战性的。现有方法使用借预制模型来促进学习,但分别从预磨料模型转移语言/视觉知识,忽略多模态对应信息。灵感来自最近对比语言 - 图像预测(剪辑)的预先推进(剪辑),在本文中,我们提出了一个端到端的剪辑驱动的参考图像分割框架(CRIS)。有效地转移多模态知识,克里斯语言解码和对比学习来实现文本到像素对齐的对比学习。更具体地,我们设计了一种视觉语言解码器,以将微粒语义信息从文本表示传播到每个像素级激活,这促进了两个模态之间的一致性。此外,我们呈现文本到像素对比学学习,明确强制执行类似于相关像素级别特征的文本特征,并与无关相似。三个基准数据集的实验结果表明,我们的拟议框架显着优于现有的性能而无需任何后处理。代码将被释放。
translated by 谷歌翻译
Imbalanced-leasemble,缩写为IMBens,是一个开源Python工具箱,用于快速实现和部署类别 - 不平衡数据的集合学习算法。它提供对多个最先进的集合不平衡学习(EIL)方法,可视化器和公用事业功能的访问,以处理类别不平衡问题。这些集合方法包括基于重采样的,例如/过度采样,以及重量基于/过度采样,例如,敏感的学习。除了实现之外,我们还扩展了传统的二进制EIL算法,与多级支持和重采样调度程序等新功能,从而使它们能够处理更复杂的任务。该软件包是在简单的,良好的API设计中开发的,遵循Scikit-Gearn的易于使用。 IMBens在MIT开源许可证下发布,可以从Python包索引(PYPI)安装。 https://github.com/zhiningliu1998/imbalanced-ensemble可以使用源代码,二进制文件,详细文档和使用示例。
translated by 谷歌翻译
联合建议解决了推荐系统的数据筒仓和隐私问题。当前的联合推荐系统主要利用加密或混淆方法来保护原始评级免受泄漏。但是,前者带有额外的沟通和计算成本,后者损坏了模型的准确性。他们俩都无法同时满足推荐系统的实时反馈和准确的个性化要求。在本文中,我们提出了联合蒙面的矩阵分解(FEDMMF),以保护联邦推荐系统中的数据隐私,而无需牺牲效率和有效性。在更多详细信息中,我们介绍了仅从本地数据生成的个性化面具的新想法,并将其应用于FEDMMF。一方面,个性化面具为参与者的私人数据提供了保护,而无需损失有效。另一方面,结合自适应安全聚合协议,个性化面膜可以进一步提高效率。从理论上讲,我们为个性化面具提供安全分析。从经验上讲,我们还显示了设计模型在不同的现实世界数据集上的优越性。
translated by 谷歌翻译